The Multi-Objective Shortest Path Problem, typically posed on a graph, determines a set of paths from a start vertex to a destination vertex while optimizing multiple objectives. In general, there does not exist a single solution path that can simultaneously optimize all the objectives and the problem thus seeks to find a set of so-called Pareto-optimal solutions. To address this problem, several Multi-Objective A* (MOA*) algorithms were recently developed to quickly compute solutions with quality guarantees. However, these MOA* algorithms often suffer from high memory usage, especially when the branching factor (i.e., the number of neighbors of any vertex) of the graph is large. This work thus aims at reducing the high memory consumption of MOA* with little increase in the runtime. In this paper, we first extend the notion of "partial expansion" (PE) from single-objective to multi-objective and then fuse this new PE technique with EMOA*, a recent runtime efficient MOA* algorithm. Furthermore, the resulting algorithm PE-EMOA* can balance between runtime and memory efficiency by tuning a user-defined hyper-parameter.
translated by 谷歌翻译
机器人已用于各种自动化,但机器人的设计仍然主要是手动任务。我们试图提供设计工具来自动化机器人自己的设计。机器人设计自动化中的一个重要挑战是,大型且复杂的设计搜索空间随着组件的数量成倍增长,从而使优化难度和样本效率低下。在这项工作中,我们介绍了语法引导潜在空间优化(GLSO),该框架通过训练图形变量自动编码器(VAE)将设计自动化转换为低维连续优化问题,以学习图形结构的设计空间之间的映射和一个连续的潜在空间。这种转换允许在连续的潜在空间中进行优化,在这种情况下,通过应用诸如贝叶斯优化等算法,可以显着提高样品效率。 GLSO使用图形语法规则和机器人世界空间特征指导VAE训练VAE,从而使学习的潜在空间专注于有效的机器人,并且更容易探索优化算法。重要的是,可以重复使用训练有素的VAE来搜索专门针对多个不同任务的设计,而无需再培训。我们通过为模拟中的一组运动任务设计机器人来评估GLSO,并证明我们的方法优于相关的最新机器人设计自动化方法。
translated by 谷歌翻译
视觉摄像头是超越视觉线(B-VLOS)无人机操作的吸引人的设备,因为它们的尺寸,重量,功率和成本较低,并且可以为GPS失败提供多余的方式。但是,最新的视觉定位算法无法匹配由于照明或观点而导致外观明显不同的视觉数据。本文介绍了Isimloc,这是一种条件/观点一致的层次结构全局重新定位方法。 Isimloc的位置功能可用于在不断变化的外观和观点下搜索目标图像。此外,我们的分层全局重新定位模块以粗到精细的方式完善,使Isimloc可以执行快速准确的估计。我们在一个数据集上评估了我们的方法,其中具有外观变化和一个数据集,该数据集的重点是在复杂的环境中长期飞行进行大规模匹配。在我们的两个数据集中,Isimloc在1.5s推导时间的成功检索率达到88.7 \%和83.8 \%,而使用下一个最佳方法,为45.8%和39.7%。这些结果证明了在各种环境中的强大定位。
translated by 谷歌翻译
位置识别是可以协助同时定位和映射(SLAM)进行循环闭合检测和重新定位以进行长期导航的基本模块。在过去的20美元中,该地点认可社区取得了惊人的进步,这吸引了在计算机视觉和机器人技术等多个领域的广泛研究兴趣和应用。但是,在复杂的现实世界情景中,很少有方法显示出有希望的位置识别性能,在复杂的现实世界中,长期和大规模的外观变化通常会导致故障。此外,在最先进的方法之间缺乏集成框架,可以应对所有挑战,包括外观变化,观点差异,对未知区域的稳健性以及现实世界中的效率申请。在这项工作中,我们调查针对长期本地化并讨论未来方向和机会的最先进方法。首先,我们研究了长期自主权中的位置识别以及在现实环境中面临的主要挑战。然后,我们回顾了最新的作品,以应对各种位置识别挑战的不同传感器方式和当前的策略的认可。最后,我们回顾了现有的数据集以进行长期本地化,并为不同的方法介绍了我们的数据集和评估API。本文可以成为该地点识别界新手的研究人员以及关心长期机器人自主权的研究人员。我们还对机器人技术中的常见问题提供了意见:机器人是否需要准确的本地化来实现长期自治?这项工作以及我们的数据集和评估API的摘要可向机器人社区公开,网址为:https://github.com/metaslam/gprs。
translated by 谷歌翻译
从废物电气和电子设备(WEEE)中有效拆卸和回收材料是将全球供应链从碳密集型,采矿材料转移到可回收和可再生的材料的关键步骤。常规的回收过程依赖于切碎和分类废物流,但是对于由许多不同材料组成的Weee,我们探索了针对许多物体的靶向拆卸,以改善材料恢复。许多WEEE对象都共享许多关键特征,因此看起来非常相似,但是它们的材料组成和内部组件布局可能会有所不同,因此,对于随后的拆卸步骤,为准确的材料分离和恢复而具有准确的分类器至关重要。这项工作介绍了RGB-X(一种多模式图像分类方法),该方法利用了来自外部RGB图像的关键特征,并从X射线图像中生成的图像来准确地对电子对象进行分类。更具体地说,这项工作开发了迭代类激活映射(ICAM),这是一种新型的网络体系结构,明确地侧重于用于准确的电子对象分类所需的多模式特征映射中的细节。为了培训分类器,由于费用和需要专家指导,电子对象缺乏大型且注释良好的X射线数据集。为了克服这个问题,我们提出了一种新的方法,可以使用应用于X射线域的域随机化创建合成数据集。合并的RGB-X方法使我们在10代现代智能手机上的准确度为98.6%,其单独的精度为89.1%(RGB)和97.9%(X射线)。我们提供实验结果3来证实我们的结果。
translated by 谷歌翻译
我们提出Automerge,这是一种LIDAR数据处理框架,用于将大量地图段组装到完整的地图中。传统的大规模地图合并方法对于错误的数据关联是脆弱的,并且主要仅限于离线工作。 Automerge利用多观点的融合和自适应环路闭合检测来进行准确的数据关联,并且它使用增量合并来从随机顺序给出的单个轨迹段组装大图,没有初始估计。此外,在组装段后,自动制度可以执行良好的匹配和姿势图片优化,以在全球范围内平滑合并的地图。我们展示了城市规模合并(120公里)和校园规模重复合并(4.5公里x 8)的汽车。该实验表明,自动化(i)在段检索中超过了第二和第三最佳方法的14%和24%的召回,(ii)在120 km大尺度地图组件(III)中实现了可比较的3D映射精度,IT对于暂时的重新审视是强大的。据我们所知,Automerge是第一种映射方法,它可以在无GPS的帮助下合并数百公里的单个细分市场。
translated by 谷歌翻译
在不同情况下,机器人有可能执行搜索各种应用程序。我们的工作是由人道主义助理和灾难救济(HADR)激发的,在存在冲突的标准,目标和信息的情况下,找到生命的迹象通常至关重要。我们认为,厄运搜索可以提供一个框架来利用可用信息,并为HADR等应用程序探索新信息,尤其是在时间本质上。千古搜索算法规划轨迹,使得在一个地区所花费的时间与该地区的信息量成正比,并且能够自然平衡剥削(近视搜索高信息搜索区域)和探索(访问搜索空间的所有位置以获取新的信息)。现有的Ergodic搜索算法以及其他基于信息的方法通常仅使用单个信息图考虑搜索。但是,在许多情况下,使用多个编码不同类型相关信息的多个信息图很常见。当前的厄运搜索方法没有同时的能力,也不具有平衡信息优先级的方法。这使我们提出了一个多目标的千古搜索(MOES)问题,旨在找到所谓的帕累托最佳解决方案,目的是为人类的决策者提供各种解决方案,这些解决方案在相互矛盾的标准之间进行贸易。为了有效地解决MOE,我们开发了一个称为顺序局部Ergodic搜索(SLE)的框架,该框架将MOES问题转换为“重量空间覆盖率”问题。它利用了厄隆搜索方法的最新进展以及局部优化的想法,以有效地近似帕累托最佳前沿。我们的数值结果表明,SLE的运行速度明显快于基线方法。
translated by 谷歌翻译
对于长期自治,大多数位置识别方法主要在简化的方案或模拟数据集上进行评估,该数据集无法提供可靠的证据来评估当前同时定位和映射的准备就绪(SLAM)。在本文中,我们提出了一个长期的位置识别数据集,用于在大规模动态环境下用于移动定位。该数据集包括一个校园规模的轨道和城市规模的轨道:1)校园轨道重点关注长期财产,我们在10个轨迹上记录Lidar设备和一个全向相机,并且每个轨迹在变体下重复记录8次照明条件。 2)城市轨道聚焦大型物业,我们将激光雷达设备安装在车辆上,并穿过120公里种类在城市环境中。每个轨迹都提供了两个轨道的地面真实位置,这是从全球位置系统中获得的,具有额外的基于ICP的点云的细化。为了简化评估程序,我们还为Python-API提供了一组地点识别指标,以快速加载我们的数据集并根据不同方法评估识别性能。该数据集的目标是寻找具有高位置识别精度和鲁棒性的方法,并提供长期自治的真正机器人系统。可以从https://github.com/metaslam/alita访问数据集和提供的工具。
translated by 谷歌翻译
缩放多智能体增强学习的卓越障碍之一是为大量代理商分配给个别代理的行动。在本文中,我们通过呼叫\ yrest {部分奖励去耦}(prd)的方法来解决这一信用分配问题,该方法试图将大型合作多代理RL问题分解成涉及代理子集的解耦子问题,从而简化了信用分配。我们经验证明使用PRD在演员 - 批评算法中分解RL问题导致较低的差异策略梯度估计,这提高了各种其他跨越多个代理RL任务的数据效率,学习稳定性和渐近性能。演员 - 评论家方法。此外,我们还将我们的反事实多代理政策梯度(COMA),最先进的MARL算法以及经验证明我们的方法通过更好地利用代理商奖励流的信息来实现昏迷状态,以及启用最近的优势估计的进步。
translated by 谷歌翻译
串联连接的机器人是希望在大规模灾害中的搜索和救援等限制空间中执行任务的候选人。这种机器人通常是韧带,我们假设肢体的添加可以改善移动性。然而,在设计和控制这种装置方面的挑战在于以提高移动性的方式协调高维冗余模块。在这里,我们开发了一个控制串联连接的多腿机器人的一般框架。具体地,我们结合了两种方法来构建一般的形状控制方案,其可以为各种机器人形态的有效运动提供自变形(“Gaits”)的基线模式。首先,我们从维度降低和生物步态分类方案中获取灵感,以产生身体变形和脚提升/降低的循环模式,其促进了任意基板接触图案的产生。其次,我们使用几何力学方法来促进识别这些起伏的最佳相位,以最大化速度和/或稳定性。我们的方案允许在扁平摩擦地形上的多腿机器人机车上的有效Gaits开发有多种数量的四肢(4,6,16,甚至0四肢)和身体致动能力(包括在Limbless设备上的侧壁Gaits)。通过适当协调身体波动和腿部放置,我们的框架结合了Limbless机器人(模块化)和腿机器人(移动性)的优势。我们预计我们的框架可以提供一般的控制方案,以便快速部署一般的多腿机器人,铺平往达在现实条件下遍历复杂环境的机器的方式。
translated by 谷歌翻译